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SUMMARY

A theory for the optimum performance of a rotor hovering out of ground
effect is developed. The performance problem is formulated using general
momentum theory for an infinitely bladed rotor, and the effect of a finite
nunber of blades is estimated. The analysis takes advantage of the fact that
a simple relation exists between the radial distributions of static pressure
and angular velocity in the ultimate wake, far downstream of the rotor, since
the radial velocity vanishes there. This relation permits the establishment

of an optimum performance criterion in terms of the ultimate wake velocities

by introducing a small local perturbation of the rotational velocity and

requiring the resulting ratio of thrust and power changes to be independent
of the radial location of the perturbation. This analysis fully accounts for
the changes in static pressure distribution and axial velocity distribution
throughout the wake as the result of the local perturbation of the rotational
velocity component. This improvement'over earlier theories is shown to have
finite contributions to the optimum distributions of circulation and inflow
as well as to the rotor performance.
The velocities in the ultimate wake are related to the circulation and

inflow distributions at the rotor disk using a constant contraction ratio for



the wake. Optimum distributions of the circulation and the inflow, together
with the performance characteristics are presented for sixteen values of the

thrust coefficient ranging from 0.001 to 0.050.
I. INTRODUCTION

The development of a suitable theory for predicting the optimum performance
of a rotor hovering out of ground effect (OGE) has long been a central problem
of rotorcraft aerodynamics. Rotorcraft typically are required to be able to
hover OGE when occasion demands. $Since the power required for a rotor to
develop a given amount of thrust is the greatest during hover OGE, the payload
capability of the rotorcraft is often limited by the hovering performance of
the rotor OGE. Tor a modern rotorcraft, the payload is likely to be 1/5 to
l/h of the gross weight at take off. Consequently, a rotor which develops a
thrust 5% less than the maximum attainable while hovering OGE will lead to a
deficiency in payload capability of 20% to é5%. Tt is thus of great practical
importance to study the performance of a rotor hovering OGE. The basic task
in such a performance study is the determination of a distribution of inflow
velocity, over a given rotor disk, that leads to a minimum amount of power
expenditure for a given amount of thrust. This information, when used in
conjunction with the well known blade-element theory, permits the prediction
of the performance limit and the required radial distribution of circulation
in order to approach this 1limit. It thus provides a rational basis for blade
design.,

A hovering rotor can be considered as a special case of a propeller, with

zero advance velocity. Marine and aircraft engineers have long been concerned



with propeller aerodynamics. In the majority of situations of interest to
propeller aerodynemicists, however, the propeller-induced velocity is small
in comparison with the propeller's velocity of advance. As a result,
propeller performance theories customarily make use of simplifications that
are valid only if the induced velocity.is small. These theories therefore
usually do not go over to rotor theories in a straightforward manner and
rotor performance predictions based on generalized propeller theories do not
always correlate well with experimental data (Ref. 1).

In recent years, the search for better methods of predicting rotor
performance in hover yieided a copious volume of literature on the subject.
Several recent articles contain comprehensive bibliography (Ref. 2) of the
earlier work as well as review and reassessment (Ref. 1) of "classical"
theories. The brief discussion given below provides a summary account of
previous theories and present efforts. Only a few pertinent articles are
referred to here. In many cases, a large_number of articles exist which are
based on essentially the same approach. Only one representative article is
then mentioned.

The earliest theory on propeller performance was the axial momentum
theory, based on the actuator disk (infinitely-bladed propeller) concept by
Rankine (Ref. 3) and Froude (Ref. 4). Within the context ﬁf this theory, the
propeller operates without any frictibnal drag on the blade and induces no
rotation in the slipstream. Since the flow upstream of the propeller disk
is irrotational, the tangential velocity component at the disk is zero, and
it follows from the Kutta-Joukowski theorem that the disk cannot be subjected
to a 1lift force. Disregarding this inconsistency, two well known conclusions

were obtained: <first, an optimum propeller is one with a uniform axial



velocity at the propeller disk, and second, when applied to a hovering rotor,
the minimum power coefficient is equal to the thrust coefficient to the 3/2
power divided by the square root of 2. The theory, however, provides no
information on the radial distribution of circulation over the disk and
consequently no indication as to how the blades should be designed for optimum
performance.

In general, the energy loss due to the rotational motion in the slipstream
of a propeller is small. The neglect of the slipstream rotation was therefore
thought to be justified for the purpose of predicting the performance of
propellers. The actual performance of propellers, however, generally does
not meet the expectation of the axial momentum theory even when the various
loss factors, not including the slipstream rotation, are taken into account.
This deficiency is explained by the general momentum theory, which incorpo-
rates a procedure to acéount for some of the effects of slipstream rotation.
One of the major conclusions of the general momentum theory is that the
slipstream rotation, though small in terms'of the energy content, exerts an
important influence on the optimum distribution of inflow velocity over the
propeller disk. A detailed presentation of the general momentum theory is
given in Ref. 5 which also contains a presentation of efforts directed toward
the study of helicopter rotors. The general momentum theory does provide
information on the optimum distribution of circulation over the disk. The
solutions as given in Ref. 5, however, are approximate and only partially
account for the effects of slipstream rotation.

The theory which represents the current state of the art for routine
calculation of propeller performance is the vortex theory. The basic vortex

theory represents the wake trailing the blades by a distribution of concentric



cylindrical vortex sheets. These vortex sheets describe the radial variation
of the blade circulation and thus imply an infinite number of blades. The
effect of a finite number of blades is obtained approximately by Prandtl
(Ref. 6) using a tip loss factor. An improved analysis by Goldstein (Ref. 7)
represents the trailing vortex sheets, for optimum performance, by discrete
helicoidal surfaces of constant helix angle and moving as rigid surfaces.
Goldstein's work formed the basis of much of the subsequent analyses by Lock,
Theodorsen, Lerbs, etc., (Refs. 8, 9, 10, and 11) that proved to be suffi-
ciently accurate for predicting propeller performance. The use of the vortex
theory for predicting hovering rotor performance, however, yielded overly
optimistic results (Ref. 1). Reviews of the vortex theory suggest that the
wake contraction, the slipstream rotation, and the associated non-uniform
inflow are the factors that contribute most to the inability of the vortex
theory to predict the hovering rotor performance accurately. This contention
is supported by recent results obtained from the numerical computation of the
entire rotor-induced flow field. Before d13cussing the numerical approach,
it is to be noted that the work of Lerbs (Ref. 11) extends the vortex theory
to heavily-loaded propellers where the effect of wake contraction is important.
Lerbs' work, though well known in marine engineering, has not been extended
and applied to the study of rotor performance. As is the case of the general
momentum theory, the work of Lerbs is based on certain simplifying assumptions
that cannot be justified for a hovering rotor. The modification of Lerbs!
analysis for rotor applications is by no means stralightforward.

The continuing requirements of higher forward flight speed and larger
rotorcraft, coupled with the need to keep the rotor reasonsbly small from

weight and operational flexibility considerations, led to the dévelopment of



rotors with higher rotational speed and disk loading. This resulted in
increased inaccuracy of the existing theories in predicting the hovering
performance. The most recent efforts to overcome this difficulty is the
development of numerical methods for the integration of the Biot-Savart law;
the use of which permits the computation of the entire flow field induced by
the rotor. It is noted that calculation of the rotor performance requires
only a knowledge of the inflow velocity over the propeller disk. The quadra-
ture of the Biot-Savart law, in order to establish the inflow velocity
components at the disk, however, requires the computation of the entire vortex
system at and trailing the disk. Since the computation requires an iterative
procedure and the number of data points involved in each iteration is large,
the approach is time-consuming even by modern computational standards. To
solve a problem where the propeller geometry, rather than the blade circula-
tion distribution, is specified, an additional iterative procedure is needed
to establish the circulation distribution corresponding to the specifiéd
propeller geometry. TFurther, to obtain thé propeller geometry that would
give the optimum performance, a parametric study involving a large number of
geometries must be treated. For this reason, although some success has been
reported in the development of the Biot-Savart law approach, the utility of’
this approach for design purposes is limited at the present;

The purpose of this report is twofold, (a) to present a simple theory,
together with numerical results, for rotor performance and (b) to clarify
certain features of the performance problem pertinent to rotors hovering OGE.
The theory presented here is similar to the general momentum theory described
in Ref. 5 in that the rotor is represented by an actuator disk. It is there-

fore subjected to some of the limitations of the general momentum theory. In



particular, the correction factor for finite number of blades must be
estimated separately, for example, by an extension of Lerbs' (Ref. 10) method
for heavily loaded propellers. The present method, however, is more complete
in that it fully accounts for the effects of slipstream rotation. This
improvement, which is not important in the case of a lightly loaded propeller,
has finite contributions to thrust and power requirements of a rotor. The
use of the present theory permits the calculation, in a straightforward
manner, of the distribution of circulation and inflow velocity over the rotor
disk for the infinitely bladed case. These distributions are, along with the
figure of merit and the optimum power coefficient, presented for several

values of the thrust coefficient.



SYMBOLS

a = ul/QRl, dimensionless axial velocity in the ultimate wake

A value of "a" at the rim of the ultimate wake

b = wl/Q, dimensionless angular velocity in the ultimate wake
B value of "b" at the rim of the ultimate wake

H total head of the fluid

HO total head of the ambient fluid

Hi total head of the fluid in the ultimate wake

k = rl/r, local contraction ratio

K = Rl/R, overall contraction ratio
M figure of merit, Eq. (51)

n a constant in the optimum performance criterion, Eq. (32)

N = n/R,, a dimensionless constant
Nb number of blades
%
P static pressure of the fluid immediately upstream of the rotor disk
P, static pressure of the ambient fluid
P static pressure of the fluid in the ultimate wake



hs) static pressure jump across the rotor disk

P power expended by the rotor

P, power coefficient, Eq. (50)

Q torgque on the rotor

r radial position on the rotor disk
ry radial position in the ultimate wake
R radius of the rotor

Rl radius of the ultimate wake

S area of the rotor disk

Sl area of the ultimate wake

T thrust developed by the rotor

T, | thrust coefficient, Eq. (L9)

u axial velocity at the disk

Uy axial velocity in the ultimate wake

X = rl/Rl’ dimensionless radial pgsition in the ultimate wake

= r/R, dimensionless radial position on the disk

>
I

r circulation at the rotor disk
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circulation of each blade

angular velocity of the fluid immediately downstream of the rotor

disk

angular velocity of the fluid in the ultimate wake

angular velocity of the rotor

density of the fluid



IT. FORMULATION OF THE HOVERING ROTOR PROBLEM

The equations governing the performance of hovering rotors are derived
below within the context of the general momentum theory. The general flow
features are shown in Fig. la. The rotor is represented by an actuator disk
of radius R and driven to rotate about its axis at a constant angular velocity
Q1 in an incompressible, inviscid fluid. The flow is steady and symmetric
about the axis of the actuator disk. The rotational component of the velocity
is, however, non-zero in the slipstream. The fluid outside the slipstream is
irrotaticnal and is at rest at infinity. The total head of the fluid outside
the slipstream is therefore equal to the static pressure of the fluid far
upstream and is a constant. The actuator disk imparts an increase in total
head to the fluid passing through the disk in the form of an abrupt static
pressure increase and a change in the angular velocity of the fluid from the
zero angular momentum value immediately upstream to some finite value
immediately downstream of the disk. The law of mass conservation requires
the axial veloclty component to be continuous across the disk. The radial
velocity component is taken to be continuous across the disk within the
context of the general momentum theory.

The slipstream, in which the flow is rotational and pbssesses a higher
total head than the flow outside, contracts downstream of the disk and forms
an ultimate wake far Jownstream gf the disk. In the ultimate wake, the
radial velocity component vanishes and the flow properties are independent
of the axial coordinate. Let the flow through the annular element 48 = 2mrdr
at radius r at the disk, shown in Fig. la pass through the annular element

s, = 2nrldrl in the ultimate wake. The subscripts "1" designate flow
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conditions in the ultimate wake. The unsubscripted variables designate the
corresponding flow conditions immediately downstream of the disk.

The law of mass conservation states that

ulrldrl‘= urdr (1)

Te tangential component of the equation of motion requires the angular
momentum of the fluid to be constant along streamtubes in the slipstream.

Thus one has
0.r. % = ore (2)

The radial-component of the equation of motion requires the radial
pressure gradient in the wltimate wake to be balanced by the centrifugal
force on the fluid, since the radial velocity component is zero in the
ultimate wake. Thus

dpq 2

Bernoulli's equation, applied to the flow upstream of the disk gives

2 2
Ho=po=p+%p(u +V) (L‘)
%
where the stubscripts "o" designate flow conditions far upstream of the disk
and p is the static pressure of fluid immediately upstream of the disk.

The total head immediate downstream of the disk is

H=p +p’ +%p (W2 +v° + 0or® ' (5)

12



where p' is the pressure jump across the disk and w is the angular velocity
of the fluid immediately downstream of the disk. Applying Bernoulli's

equation to the flow downstream of the disk gives

H =p +p’ +3p (u.2 +v° + wore
_ 1 2 2 2
_Pl+2p(ul +wlrl) (6)
Equation (5) and (6) gives
r 1 .22
p =(H -H) -3pur (7)
The element of torque of the disk is equal to the flux of angular momentum
imparted to the flﬁid passing through the ammular disk element dS. Thus
aq = 2rpuwrdr (8)
The element of power expended by the disk therefore is
dP = QdQ
= 2rrpQuwr3dr (9)
This element of power is also equal to the increase in total head per unit
time imparted to the fluid passing through the annular disk element, i.e.,
\‘ﬁ’
dp = 2rr(Hl - Ho)urdr
Consequently
H - H = pwr® = pQu,r. 2 (10)
17 % =P = PN

13



Putting Eq. (10) into Eq. (7) yields

2

p’ =p(Q- 3w wr (11)
The element of thrust developed by the disk is
aT = p’as
= 2mp (0 - Lw) wridr (12)

The total thrust developed and the total power expended by the entire disk

are expressible in terms of the velocities at the disk by using Eqs. (9) and

(12) :
P = 2mpQ IR wwrdr (13)
)
and T = 21p IR Q- 2w wr3ar (1)
)

In terms of the velocities in the ultimate wake, the total power is,

using Eqs. (1), (2), and (13),

L ‘
P = 2mpQ Ii ulwlrlsdrl (15)

%
An expression for the total thrust in terms of the wake properties may be

obtained by specializing the expression for a propeller in forward motion

given in Ref. 5 to the case of zero advance velocity:

1k



T= 2”[9 J‘Rl ulzrldrl - le (Po - P1> rldrl] (26)
(o] (o]

Although the derivation presented in Ref. 5 requires certain assumptions not
appropriate for the hovering rotor case, it is shown in Appendix A of this
report that Eq. (16) is valid for the hovering rotor.
Using Egs. (&), (6), and (10), one obtains
1., ° 1 2
P, - Py =zpu;” - p(Q - Foj)ur (17)

Equation (16) can therefore be re-written as

T = 2mp J‘R ! (:%uf + (Q - %“’1> “’11"12] rydry (18)
[8)

Differentiating Eq. (17) with respect to r, gives, after using Eq. (3)

and re-arranging terms

= (Q - wl)(r12 g;% + 2wlrl> : (29)

At the rim of the ultimate wake, ry = Rl and P, =DPy- Equation (17) thus

gives

w Ry = [20 - 0 Ry ] 0 (RYR,® (20)
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ITI. CRITERION FOR OPTIMUM PERFORMANCE

In the ultimate wake where the radial velocity vanishes, the simple
relationship between the pressure and the angular velocity, Eq. (3), makes
it possible to express the axial velocity u, as a function of the angular
velocity w 3 i.e., if wl(rl) is specified, then ul(rl) follows by the
quadrature of Eg. (19). Such a simple relationship does not exist at the
disk, where the radial velocity component is non-zero. Consequently, in
deriving a criterion for optimum performance, it has not been possible to
consider the flow conditions at the disk directly. In the following analysis,
a criterion for optimum performance is established in terms of the veloclty
distributions in the wake. These velocity distributions will subsequently
be related to the velocity distributions at the rotor disk and to the thrust
and power coefficients of the rotor.

Consider a given distribution of angular velocity w (rl). Let this distri-

1
bution be perturbed to wl(rl) + Mo, with'Awl given by

0, 0<r <¢
by ={e , C<r <C+A (21)

0 , [+AM<r <R

where € << wl(g) and AL << {. As a result of this perturbation in w,, there

exist perturbations in the pressure and the axial velocity in the ultimate

wake as shown in Fig. 1lb. From Eq. (3), one has

1
Py =P, - JR pw12§d§ (22)

© T
1
Thus, to the first order in Awl/wl, the perturbation in Pq> which results

16



from the perturbation in w,, is

1
1
bp, = - 2p fR w, Aw. EQE (23)
?l
Placing Eq. (21) in Eq. (23) gives
- 2pwl(g)§(eA§) 0<r) <¢
bp, = { - 2pw (D)C[e(C + AC - rp)] C<r <C+AC (2k)
0 C+A<r<R

1 1

where only the lowest order term in e/wl and in Ag/g are kept in each interval

of interest.

Using Eq. (17), the perturbation in u, can be expressed as

2
pujbuy =~ Apy +p(Q - ) r;" Moy (25)

Thus from Egs. (21) and (2U)

20w, () L(€AC) 0<r <¢
pu du; = { 2pw (Q)Cle(grac-r)) ] + pf-w (0 I¢ Ze C<r  <C +C (26)
0 € +AC < ry < Ry

Using Egs. (16) and (15), the changes in thrust and in power due to the
®

perturbation in w, are

AT = om le [2p u, bu, + Apl] r,dry (27)
8]
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and
AP = 20 l 1w o, + o M) ro3ar (28)
. p t b)) ryTary

Using Egs. (21), (24), and (26), one cbtains

AT = 2mp[en) - wl(é)] c3(eag) (29)
and
0 (D) (0 - o) C o
2 = 2mpn fu 3 + 2 = L+ aug fo E% Sag} (eoc) (30)

Equations (29) and (30) may be combined to express AP in the form

AP = g(C) AT (31)

where g({) is a function of {, the location where the angular velocity
perturbation is introduced. Suppose that an angular velocity perturbation

is introduced at Ql, with resulting changes in power and thrust APl and ATl.
Suppose a second angular velocity perturbation is introduced at C2 with
resulting changes in power and thrust AP2 and AT2' By suitebly selecting
the values of €Al at Ql and Q2, the net change in thrust due to the tiwo
perturbations is made to zero, i.g., AT = ATl + AT2 = 0. Then,usiﬁg Eq. (31),

the net change in power is
o= ap) + 80, = [g(C)) - &(Cy)] ATy

Since AT, can be made either positive or negative by choosing the sign of el

18



in Eq. (29), it is possible to obtain a negative value for AP if g(gl) # g(ge).
In other words, it will be possible for the rotor (with fixed R and 0) to
develop a given amount of thrust while expending a smaller amount of power by
altering the given angular velocity distribution wl(rl). This distribution
therefore is not optimum. |

It is obvious, therefore, that the optimum distribution wl(rl) requires
g(Cl) = g(Cz)- In other words, the criterion for optimum performance is that
g(C) is a constant. Iet this constant be (In. From Egs. (29) and (30), the

optimum performance criterion is

w W
2 171 1 L
=ury” 4+ 2wl f: ——-ul §3d§ + ——ul ry Q - wl) (32)

2
nrl (20 - wl)

A differential form of this performance criterion is obtained by dif-
ferenting both sides of Eq. (32) with respect to Ty The resulting equation

and Eq. (19), both containing the derivatives of u; and w; with respect to ry,
du aw

permit each of the derivatives, a;I and E;I

u;, Wy, and ry. In terms of dimensionless variables x = r;/R;, a = u,/(R,,

b = wl/Q, and the dimensionless constant N = n/Rl, the two derivatives are

, o be expressed as a function of

da _ _2ab(l - b)[26° - a(h - b) N + 2bx212X - (33)

X % 553N - a%(1 - 2b) ¥ + b2(1-b) 2 x

&

and

@ _ 2[at - a3(2-b) W+ 6%(3 - 2b) %° - b1 - b)) (31
dx [ah - 283y - azb(l - 2b) X2 +'b2(l - b)th] X

At the rim of the slipstream, a and b are related by Eg. (20) which, in the

19



non~dimensional form, is

2% = B(2 - B) (3%)

where A and B are values of a and b respectively at x = 1.
Taking the upper limit of integration to be R; in Eq. (32) and using

Eq. (35), one obtains an expression for N:

__B [3-28 f
~N"'2-B[A +2 .

ax | | (36)

® o

For any given value of B (or A), the system of equations (33) to (36)
determine functions a(x) and b(x) that give optimum rotor performance as
well as the value ofv N. For a given value of B, the value of A is determined
by Eq. (35). The value of N depends on the functions a(x) and b(x) and is
determined in an iterative procedure together with the functions a(x) and
b(x). For the first iteration, an estimated value of N is placed in Eqs.r (33)
and (34), which are solved for a(x) and "b(x) using a fourth order Runge-Kutta
method for simultaneous first order ordinary differential equations. The
calculation begins at the rim, x =1, where the boundary values A and B are
known, and proceeds inward towards the axis, x = O. The results are used to
obtain a corrected value of N for the subsequent iteration. The iterative
procedure continues until the quadrature of Eq. (36) yields a value of W
differing insignificantly from the input value of N in Egs. (33) and (3L .

The detailed computational procedures are presented in Appendix B.

20



IV. PERFORMANCE AND FLOW CONDITIONS AT THE ROTOR DISK

For a given radius of the ultimate wake, Rl’ and a given rotor angular
velocity 0, the optimum performance functions a(x) and b(x) specify the
optimum flow field in the ultimate wake. The corresponding power expended
and thrust developed by the rotor are determinant from Egs. (15) and (18).
The optimum circulation and the axial inflow velocity at the disk as well as
the power and thrust coefficients and the figure of merit ofithe rotor can be
computed based on the known functions a(x) and b(x), provided that a func-
tional relationship between r and ry can be established. In theories of
rotor and propeller performance, it is customary to obtain a differential

form of the thrust element by differentiating equation (18):
= ol Ly 2 ;)2]
aT = 2ﬁp[2 w4 (Q - 3w jor. " | ridry (37)
Equating the right sides of Egs. (12) and (37) gives

2 ) 2]
ar [“1 * (29 - W) 0Ty |7y

= (38)
dry (20 - w) wr3
Equations (2) and (38), together with the boundary condition
r=0 at r, =0 (39)

determine a functional relationship between r and T including the overall
contraction ratio K = Rl/R’ when the velocity distributions uy and Wy in the
wake are prescribed.

Equation (37) obviously is not the only expression that satisfies Eq. (18);

21



for any expression g(rl)drl which gives le g(rl)drl = 0 can be added to the
right side of Eq. (37), and the resultingoexpression still satisfies Eq. (18).
In fact, it is shown in Appendix C that for ®; bounded and r(rl) a one to one
function, no solution of Eq. (38) exists which satisfies the boundary condi-
tion (39). A more detailed discussion is given in Ref. 15.

The function r(rl) can be cbtained as a part of the solution of the
complete flow field between the disk and the ultimate wake. The differential
equation governing the flow field is elliptic (Ref. 12) and it has been
suggested (Ref. 13) that the exact contraction ratio can be obtained only by
the complete solution of the governing equation. Such a complete solution
constitutes a major task demanding a large amount of computational effort.
Accordingly, in thevpresent work, an approach which requires neither the use
of Eq. (38) nor the solution for the entire flow field is developed. In this
approach, the local contraction ratio k = rl/r is taken to be independent of
the radial position r (or rl).

It is recognized that in general the local contraction ratio depends
on the radial position. The results of Ref. 10, however, indicate that for
heavily loaded free-running propellers, the contraction ratio is nearly
independent of the radial position, except near the axis of the propeller,
where the dependence of the contraction ratio on the radial position has only
small effects on the propeller’s%§erfbrmance. Thus it 1s expected that the
assumption of a constant contraction ratio is reasonasble for rotor performance
studies.

With k(r) = X, one has

r=r /K and dr = dr /K ' © (ko)

22



Thus Egs. (1) and (2) become
u = u.K (41)
2 4
and w=wkK (2)

The value of K can be determined by equating the right sides of the two total
thrust equations, (14) and (18). Using Egs. (LO) to (42) and rearranging

terms, one obtains the following expression for K:

1
1 2 Te
IR uy rydry

K=|1+—2 (43)
0 le wlrl3drl

0

Integrating by parts gives

2 2 -
U, (R,)R du
1.2 e e 1J‘FJ_ 2 1
fR wrdr, =22 2 ar (k)

o) 2 o) 1

Using Egqs. (19) and (20) and integrating by parts yields

1 2 _ 1 3 ‘
ji Uy rldrl = 20 ji wyry~dry (45)

Putting Eq. (45) into Eq. (43) gives
K=1M\2 (46)

which is the value predicted by the axial momentum theorem.

The axial inflow velocity and the circulation at the disk are related to

23



the axial and angular velocities in the ultimate wake by
u(r) =% u(r) (k)
and I(r) = 2mw, (r,)r. 2 (48)
17171

The thrust and power coefficients are given by

- (QR) -1 fl [s2 + (2 - B) 0] xax (49)

P 1 l
P = mmm—— e bX3d 50
¢ TTR2p (CR) 3 /7 Yo ; * (30)

The figure of merit is given by

M = - (51)

V. RESULTS AND DISCUSSIONS

The optimum performance characteristics of the hovering rotor are
presented in Table 1. The minimum power coefficient, the optimum figure of
merit and the non-dimensional citculation at the disk edge are given for 16
values of the thrust coefficient between 0.001 and 0.050. This range of
thrust coefficient was considered to bracket the normal operating range of
hovering rotors.

The optimum radial distributions of circulation on the disk.are presented

2



in Fig. 2 for the 16 values of the thrust coefficient. It can be seen that
for small values of Tc’ the optimum circulation is nearly independent of the
radial position except near the axis. For higher wvalues of Tc’ the deviation
of the optimum circulation from a constant value extends over a larger region
and the magnitude of the deviation is greater.

The corresponding optimum distributions of the axial inflow velocity at
the disk are presented in Fig. 3. It can be seen that a similar pattern
exists for the axial inflow velocity as for the circulation. That is, the
optimumn axial inflow velocity is nearly uniform for small values of Tc except
near the axis. The deviation of optimum axial infloﬁ velocity from a
constant value is more significant for the higher Tc values. The slope of
the curves u(r) is zero at r = O as expected.

In Ref. 5, an approximate solution for the hovering rotor problem is
given based on the assumptions that the radial pressure gradient in the
ultimate wake is negligible and that the non-dimensional velocities at the

disk u(y) = 'Ql'lﬁ and O(y) = % are

2
U=l (52)
n” +y
2
~ 2m
and _ O = s (53)
m +y :

where m is a constant and y = r/R. The approximate function ®(y) and u(y)
are compared to the present results for optimum performance in Figs. 4 and 5
for the case Tc = 0.01. A similar comparison for the circulation is given in

Fig. 6. The comparisons show that the approximate results deviate signifi-
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cantly from the present results, particularly in the inboard region of the
disk. The deviations are more severe for larger values of Tc’ The approxi-
mate results give excessively high value of ® and zero value of u at the axis,
as is shown to be incorrect in Appendix C. The present solution gives a
moderate value of ® and a finite value of u at the axis.

The variation of pressure in the ultimate wake is plotted against the
radial position in Fig. 7, again for the case Tc = 0,01. As can be seen from
Eq. (17), if the pressure gradient in the ultimate wake is néglected, as was
done in Ref. 5, the axial velocity vanishes at the axis. If the pressure
gradient is taken into account, as is in the presentbanalysis, the axial
velocity is finite at x = 0. The value of (po - pl)/p(QRl)z = 0.0123 at
X, = 0, given in Fig. 7, corresponds to a value of u, = 0.157 QRl, which is
comparable to the maximum axial velocity in the wake, 0.207 (Ry. The effect
of the pressure gradient in the ultimate wake on the thrust developed by the
rotor is represented by the second term on the right side of Eq. (16). The
neglect of the pressure gradient would lead to, according to Fig. 7, a
prediction of the thrust coefficient approximately 2% higher than the optimum
for the case TC = 0.01. More important is the fact that the optimum radial
dissributions of circulation and axial inflow velocity predicted by the
approximate theory, which neglects the pressure gradient, éontain significant
errors.

In Fig. 8, the optimum power coefficient is presented as a function of the
thrust coefficient. The dependence of the figure of merit on the thrust co-
efficient is shown in Fig. 9. The present result is compared with the approxi-
mate result of Ref. 5 and the 1deal figure of merit. The figure shows that

the approximate method of Ref. 5 predicts the rotor performance'somewhat more
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optimistically than the present theory. Both the approximate method and the
present method predict performance substantially lower than ideal. The
deviation from the ideal performance increases with increasing thrust
coefficient.

The present results are primarily concerned with an infinitely bladed
rotor. The effect of a finite number of blades may be determined, for example,
by extending Lerbs' work (Ref. 10) on heavily loaded, free running propellers
to hovering rotors. An estimate of the effect of number of>blades on the
optimum distribution of circulation is provided by modifying Prandtl's
approximate method (Ref. 6) of calculating the "tip loss" factor and applying
the result to the hovering rotor case. The procedure is outlined in Appendix
D. The results are shown in Figure 10 for rotors with 2, 4, and 6 blades at
TC =0.010. Based on these results, the corrected thrust coefficients for
2, I, and 6 blades are respectively 0.00759, 0.00865, and .00906. The
corresponding corrected power coefficients are .0005L47, 0.000624, and
0.000655. The figures of merit are 0.855, 0.911, and 0.931. In comparison,
without the tip loss correction, the power coefficients for the infinitely
bladed rotor are respectively (at T, = 0.00759, 0.00865, and 0.00906)
O.gb0h79, 0.000585, and 0.000627. The figures of merits are 0.975, 0.973,

and 0.972.
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VI. CONCLUSIONS

A theory for the optimum performance of a rotor hovering out of ground
effect is presented. The formulation of the problem is based on the general
momentum theory of an actuator disk (infinitely bladed rotor) and makes use
of the fact that in the ultimate wake, far downstream of the rotor disk, the
radial component of the velocity vanishes and there exists a simple relation
between the radial distribution of static pressure and that of rotational
velocity component. The present analysis, which leads to an optimum perform-
ance criterion, is more complete than previous analyses in that the present
work fully accounts for (1) the effect of slipstream rotation and (2) the
existence of a radial pressure gradient in the ultimate wake.

Numerical results are presented for the radial distributions of circula-
tion and the axial inflow velocity at the disk, the optimum power coefficient
and the optimum figure of merit for sixteep values of the thrust coefficient
covering the normal range of interest in rotorcraft application. Comparisons
are made between previous approximate results and the present more exact
results.

¥everal conclusions of the present study are summarized below:

1. The customarily accepted expression for the differehtial element of
thrust in terms of the flow conditions in the ultimate wake, used in previous
analyses to relate the wake flow to the flow at the disk, is inconsistent with
the fact that a radial pressure gradient exists in the ultimate wake.

2. The existence of the radial pressure gradient in the ultimate wake
has a significant effect on the optimum radial distribution of circulation

and the optimum performance of the rotor in the range of thrust coefficient of
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interest to rotorcraft spplication.

3. Numerical results obtained based on the present theory indicate that
previous approximate theories yielded overly optimistic results on the per-
formance of hovering rotors. The inaccuracy in the approximate results
increases with increasing thrust cocefficient. As has been noted by earlier
investigators comparing experimental data with theoretical results, the
existing theories generally overestimate the hovering rotor performance in
the higher thrust coefficient range. Thus the correction factor based on the
present theory may be utilized to improve the previous predictions.

h, With the assumption of uniform contraction, the contraction ratio is
1//?? , the value predicted by the axial momentum theory.

5. The approach developed is potentially useful for predicting the
optimum performance and the related distribution of ecirculation of heavily
loaded propellers and rotors in very general types of axi-symmetric flow,
such as the shrouded propeller and the ductedifan flows. The effect of finite

number of blades can be determined separately by modifying available theories.
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OPTIMUM PERFORMANCE CHARACTERISTICS

P xl()3
c

.02246

.06377
L1175
.1815
.2545
3355
4239
5193
.6213
.7296
1.3569
2.1134
2.9865
3.9682
6.2379
8.8958

TABLE 1

995k
-9917
.9885
.985h
.o82k
-9796
9769
9743
9717
.9692
957k
.9Lk63
-9359
-9259
.9086
.8887

B x 10

.2026
.Loo1
.6189
.8317
1.0473
1.2657
1.4866
1.710
1.9358
2.1640
3393
-569

= W

.8510

1

7.1841

10.0024

©13.0246



APPENDIX A
TOTAT, THRUST IN TERMS OF THE WAKE PROPERTIES

Consider a spherical control volume of radius R centered at the center of
the rotor disk. ILet this control surface be divided into two parts, Sa and

S Sa being the part of the control surface where the slipstream leaves the

b’
control volume and Sb being the remaining part of the control surface. The

momentum theorem gives, for the present steady flow problem,

T = f (p + pu2) n.i a8 + f (p + puz) n-i as (a-1)
S & g b

Ca b
where p and u are the static pressure and the axial velocity of the fluid,
fl is the unit outward normal and i is the unit vector in the axial direction.
At large distances from the rotor disk, the effect of the rotor on the fluid
outside the slipstream is equivalent to that of a sink located at the center
of fhe rotor disk. The strength of the sink is equal to the volume rate of
flow passing through the disk and is finite. In the limit as ® —» «, on Sb

@
the magnitude w of the velocity vector goes to zero; i.e., w ﬂ-ég'where C is

I R
a constant. Consequently (po -p) = % pw2 - BC on Sb as R = ©, The second
28 ,
integral in Eq. (A-1) thus gives -po(ﬂRlE) as ® - =, and equation (A-1)

becomes

T = em jJq Yy -2y +euy"] rpar, (A-2)
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APPENDIX B
COMPUTATTIONAL PROCEDURES

Equations (33) and (34) constitute a system of two first order ordinary
differential equations for the functions a(x, N) and b(x, N). Equation (36)
is an auxiliary equation relating N to the functions a(x, N) and b(x, N).
Equation (35) relates the values of a and b at x = 1. Thus, if either
A =a(l) or B =b(l) is given, the functions a and b are obtainable from
Egs. (33), (34), and (36) by using an iterative method to establish the value
of N.

For a selected value of B, the value of A is calculated using Eq. (35).
The procedure for the ith iteration is as follows:

1. With a selected value of N(i) , designated Nir(li) , Egs. (33) and (3k)
are solved for a(i)(xﬁ and b(i>(x) using a fourth order Runge-Kutta method
for simultaneous solution of the differential equations. The computation
begins at x = 1 where the values of a and‘b'are known and proceeds inboard,
at intervals of Ax = 0.01,to x = 0.

@

2. With the calculated a(l)(xj and b(l)(xﬂ, a new value of N<l),

designated Noéi), is computed by numerical quadrature of the integral in

Eq. (35) using a Newton-Cotes formula.

3. The difference F(i) = Noéi) - Niéi) is calculated and compared to
Niéi). If the magnitude of F(i) is less than 10_8 Niéi), then the computation
is terminated and the functions a(i) and b(i) are accepted as the optimum
function a(x) and b(x) for the given valﬁe of B. Otherwise a value of Niéi+l)

is determined for the subsequent iteration.
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(1)

The selection of the value Nin for the initial iteration is critical.

As is shown in Fig. 3, the function a(x) is positive for optimum performance.
If the value Niél) is improperly selected, the calculated function a(l)(xﬂ

may vanish at some points in the interval 0 < x < 1. The numerical quadrature

of the integral in Eq. (36) then becomes inaccurate. In actual computation,

it was found that a value of N.(l)

in only slightly smaller than the correct

value of N may lead to computational difficulties.

A reasonable value of N.(l)

5y 1s obtained by using the form of a and b

given by Glauert's approximate expressions, Eqs. (52) and (53). That is,

a = —t—s (B-1)

and b = < 5 (B-2)

To satisfy Eq. (35) for all values of m, one has ¢, =C, = 2. Placing (B-1)

and (B-2) in Eq. (36) gives

Nilgl) _ B22-]§25 (?;Bl (B-3)
-B

i

It was found that a linear iteration procedure, i.e., letting

2

i;fl = Néut,leads to very slow convergence. In the actual computation, for
the second iteration, the value of Niée) is taken to be 0.98 Ni£l>. For all

subsequent iterations,

Niél+1) is obtained using the secant method, i.e.,
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. (i41) _ ( (1) (i 1)) (1) (1-1)> (B-1)

in

From Egs. (17) and (22), one obtains at x = O

22(0) =2 JJ bPxdx (B-5)

0o

From Eq. (32), it can be shown that

b(0) = (B-6)

=l

Equations (B-5) and (B-6) provide convenient means for checking the

accuracy of the solutions.

In order to obtain the functions a(x) and b(x) for given values of the

thrust coefficient, instead of given values of B, it is necessary to iterate

for different values of B. This iteration is straightforward and involves

no computational difficulty.
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APPENDIX C
RESTRICTIONS DUE TO RADIAL PRESSURE GRADIENT IN THE WAKE
Equations (19) and (20) give the following equation:

2 2 j‘Rl 2
u, " = (20 - ) wr,” + 2 w; r,dr, (c-1)
N1
Since @, is bounded and non-negative, the first term on the right side of
Eq. (C-1) approaches zero as ry -~ 0. Thus Uy is non-zero at the axis ry = 0.

The integral in Eq. (C-1) is positive and increases as r, — O. Hence there

1
is a point S and a positive constant X such that for ry <3g,
2 2
I (20 - o) wr.© = K (c-2)
Consequently, from Eq. (38), one has for ry <8
Kr
d 1
= 2 (c-3)

dry (20 - w) wr3

Singe r(rl) is a one to one function, neither w nor (20 - w) can be negative

for r; <8. Equation (C-3) may therefore be rewritten as -

ar Krl ) Krl g K (01
dry 20(1)1'3 200311"121- 2QMrlr

where M is a constant such that ®, < M for ry <8. Let r’ be given by
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!

dr K dr

ar. T & (c-5)
1 EQMrlr 1

and r’ = r () at ry =8 (c-6)

then, from Eq. (C-4), one has

r’ <r for ry <5 (c-7)

However, Egqs. (C-5) and (C-6) give

2 2 K
r = I‘l (S) - m &H(S/I‘:{_) (C-8)"
y 12(3) ’
Consequently r = 0 at ry = S exp[- —_—] > 0. Since r sr for rq <3,
2
Qe ()

one has r =0 at a point ry z 3 exp[—

7 ] > 0. The condition r =0

at ry = 0 therefore camnot be satisfied.

It is noted that, if the radial pressure gradient in the ultimate wake is
neglected, as was done in Ref. 5, then the last term in Eq. (C-1) vanishes.
Consequently, Uy = 0 at ry = O and the condition r = O at ry = 0 can be

satigfied. The consideration of the effects of the slipstream rotation,

however, requires the pressure gradient term to be retained.
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APPENDIX D
ESTIMATED TIP LOSSES BASED ON PRANDTL'S METHOD

Prandtl's approximate formula for the tip loss correction factor for the

blade circulation is

F = %-cos"l (e-f) (D-1)

g

where f = + 8 being the distance from the rim of the trailing vortex sheet
and h being the normal distance between two adjacent vortex sheets at the rim
of the trailing vortex system.

Prandtl's formula was derived for propellers with finite velocity of
advance and negligible slipstream contraction. The basic concept, however,
has been utilized to study the hovering rotor problem (Ref. 1l4). Applying

Eq. (D-1) to the ultimate wake, one has

and h =

where Nb is the number of blades. Consequently,

N, (1 - x)
f = -p-—é'&-— (D-Q)

The total cireculation of the rotor 1s therefore
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N.bI‘. = E'rrwlrle

b

The thrust and the power are, in terms of I"b,

T =p1\1bfifbr(0- 1w dr

P = prQ IR l'fbrudr

o}

Thus the thrust and power coefficients are

where C =

With the contraction factor k = L , one has
A2

o
o
>

Dle
I
Mof =
o

and

Thus, Egs. (D-7) and (D-8) give
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(D-6)

(D-7)

(D-8)



and

-] col2-2) vay
- X [ Gy
J2 Yo

(D-9)

(p-10)
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Figure L.- Comparison of approximate solution with present
result - optimum angular velocity distribution
for Tc = 0.010.
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